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Abstract

Many important problems in computational geometry
needs to perform some kinds of angle processing. The
polar diagram [4] is a locus approach for problems that
process angles. Using this structure in the preprocess-
ing phase, one can eliminate exhaustive search to find
objects in the scene with smallest angle according to a
point. For example, using this new partition, Jarvis’s
march method in finding convex hull of n objects will
reduce to optimal O(nlogn) time by replacing an O(n)
search problem in an optimal O(logn) location opera-
tion.

In this paper, we use the notion of the kinetic data
structure (or KDS) to maintain the the polar diagram
of a set of continuously moving objects in the scene.
KDS is one of the design and analysis tools used in
modeling of moving geometric objects, and can be used
to maintain certain attributes of a set of objects moving
in a continuous manner. We show that our proposed
structure meets the main criteria of a good KDS.

1 Introduction

Most of the solutions for geometric problems are opti-
mum in the worst case. However, if the size of the result
is small or we need to get answers for several problem
instances, these solutions may not be suitable. In these
case, algorithms that preprocess the scene and then pro-
vide answers to each query with a better performance
are widely used in this field.

C. I Grima et al. [4, 5] introduced the concept of the
Polar Diagram. The polar diagram of the scene consist-
ing of n objects is a partition of plane to polar regions.
Each object creates a polar region representing the lo-
cus of points with common angular characteristics in a
starting direction. If point p lies in the polar region of
object o, we know that o is the first object found after
performing an angular scanning from the horizontal line
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crossing p in counterclockwise direction. The computa-
tion of the polar diagram can be done using the divide
and conquer or the incremental methods, both working
in ©(nlogn), which is optimum. By using this tessel-
lation as the preprocessing phase, we can avoid other
angular sweeps by locating a point into a polar region
in logarithmic time [4].

Kinetic Data Structure (KDS) is a framework for
maintaining certain attributes of a set of objects moving
in a continuous manner. For example, KDS has been
used for maintaining the convex hull of moving objects,
or maintaining the closest distance among moving ob-
jects. A KDS consists of mainly two parts: a description
of the needed attributes with some certificates such that
as a certificate remains unchanged as long its attribute
does not change. It is assumed that we can efficiently
compute the failure time of each of these certificates. In
such events that a certificate fails, the KDS must be up-
dated. Until the next event, the current KDS remains
valid. See the survey by Guibas [3] for more background
on KDS and its analysis.

In this paper, we first propose an improved algo-
rithm for computing the polar diagram of a set of line-
segments or polygons. Then we use the notion of KDS
to model maintain the polar diagram of a set of contin-
uously moving objects in the scene. We show that our
proposed structure meets the main criteria of a good
KDS.
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Figure 1: The polar diagram of a set of points in plane.

The rest of this paper is organized as follows: In Sec-
tion 2, we define our kinetic configuration for the polar
diagram, and in Section 2.2, we see what happens when
the objects move in the plane. In Section 3.1.1, we give
a one-step algorithm to compute the polar diagram of
line-segments and polygons, which we will use in Section
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3.1 for KDS of line-segments and polygons. Finally, in
Section 3.2 we see the case for circular objects.

2 Kinetic Configuration

In this section we present a model for kinetic behavior
of the polar diagram for different situations. Given a
set of points moving continuously, we are interested in
knowing at all times the polar diagram of the scene.

2.1 Proof Scheme

For simplicity of discussions, we assume that our objects
are points in 2D. We state that each edge of the polar
diagram is called a polar edge. We also define a pivot of
an object to be the second object that lies on the polar
edge passing through it, e.g., in Figure 1, the pivot of
s4 18 s9 and the pivot of ss is sg.

We claim that if we have the sorted list of objects
according to their y-coordinates, and the pivot of each
object, we will have a unique polar diagram.

Suppose that there are n points on the scene. For
our proof scheme, we maintain two kinds of information
about the scene: we maintain the vertically sorted list of
objects, and for each object its current pivot. As we will
show shortly, these data is sufficient for the uniqueness
of our polar data, i.e. only if one of these conditions
change, the polar structure of the scene will change.

So, we will have two kinds of certificates: First we
need n — 1 certificates for storing the sorted list of
objects. For instance, if the sorted list of objects is

Sigs Siys- -5 Si,_ 1, we need the following certificates.

Sig < Siy

Siy < Siy

Sip_n < 8ip_y

For stating the pivot of each object, we need n more
certificates, each indicating a object and its pivot in the
polar diagram. In total, our proof scheme consists of
2n — 1 certificates.

2.2 Events and Event Handling

Once we have a proof system, we can animate it over
time as follows. As stated before, each condition in the
proof is called a certificate. A certificate fails if the cor-
responding function flips its sign. It is also called an
event happens if a certificate fails. All the events are
placed in a priority queue, sorted by the time they oc-
cur. When an event happens, we examine the proof and
update it. An event may or may not change the struc-
ture. Those events that cause a change to the structure

are called exterior events and other events are called in-
terior events. When the motion of an object changes,
we need to reevaluate the failure time of the certificates
that involve that object (this is also called reschedul-
ing.).

As there are two kinds of certificates in our proof
scheme, it is obvious that there must be two kinds of
events:

e pivot event, when three objects, one of which is
the pivot of another one, become collinear.

e horizontal event, when two objects have the same
y-coordinate (have a same horizontal level)

In the former case, we must update the certificates re-
lating to the sorted sequence of two neighboring points,
which is at most three certificates (two, if one of the
points is a boundary point, i.e. top-most or button-
most points). In the latter case, one certificate becomes
invalid and another certificate (indicating the new pivot
of the object) is needed. As we will show, other certifi-
cates will remain still.

Lemma 1 When an event is raised, the objects above
the other object(s) which raised the event do not change
their polar structures.

Proof: From the incremental method used for the con-
struction of the diagram of a set of points [4], we know
that there is no need to know about the state of ob-
jects below an object to determine its pivot, so when
an object changes its state, it will not affect its above
objects.

We can also say that an angular sweep that starts
from the horizontal direction would never intersect any
objects below this initial horizontal line (by definition,
the top-most object has no pivot). O
Pivot event:

First, we consider the simplest case when the lowest
object is moving. Figures 2 and 3 show these cases,
where so is moving. In Figur 2, sg is the pivot of ss.
While s5 is moving left, the line segment sgss coincides
with the object s1 (note that there may be other ob-
jects between sy and sy, but we are only interested in
s1). At the moment that three objects sg, s1, and so
become collinear, s; will occlude sy from sy and it no
longer can be its pivot. From this event on, s; becomes
the new pivot of sy. Similarly, in Figure 3, s; is the
pivot of the moving object s3. When three objects s,
s1, and s become collinear (again, there may be other
objects between each pair of these objects, but we are
not interested in them), s, needs to change its pivot
which becomes sg.

As we assumed that no other object other than s
is moving, form lemma 1 we know that there will be
no change in other objects, so at this event, only one
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Figure 2: A pivot event. As s, moves left, sg, s; and s
become collinear.

)

Figure 3: A pivot event. As s moves right, sg, s; and
$9 become collinear.

certificate becomes invalid and it must be replaced by
another certificate indicating the new pivot of the mov-
ing object. It is clear that upon occurring this event,
the processing of the event and changing of proof scheme
can be done in O(1) and O(logn), respectively (we need
to find the corresponding certificate in the certificates
list).

We now see what happens to the second lowest object
(see Figures 4 and 5, where sy is moving right). In
Figure 4, s; is the pivot of so, and also the pivot of
the lower object s3. While moving, there will be a time
that s, occludes the lower object s3 from its pivot. In
Figure 4 it is when the objects s1, so and s3 become
collinear. At this time, although there is no change in
the polar structure of the moving object so, there is a
change in the lower object s3, and we must update the
proof scheme accordingly. If sy continues its motion,
there will be a pivot event (see Figure 5) that its polar
structure is changing.

Figure 4: While moving, so can change the pivot of each
of its below objects by occluding their initial pivots.

Lemma 2 The changes in the structure of an object
caused by moving an above object, would not cause any
other change in other objects.

Proof: The structure of each object is determined by
the first object that encountered by an angular sweep.
As we assume that no other objects is moved, this en-
countered object would not change. O

o

Figure 5: For each moving object, there is one pivot
event when its own pivot will change.

From above discussions, we can deduce that if an ob-
ject is moving in the scene and there are k other objects
below it, there can be up to k pivot events changing
the structure of the below objects, and one pivot event
changing its own structure. Each of these events can
be processed in O(1) time and the change in the proof
scheme can be done in O(logn).

0 0

Figure 6: When two objects s; and sy lay on a same
horizontal level, a horizontal event is occurred and the
polar structure will change.
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Figure 7: In a horizontal event, only one of the objects
will change its pivot.

Horizontal event:

In these events, one of the situations of Figures 6
and 7 will happen. As we can see, only one of the objects
will change its pivot (set it to the third object). This
change of configuration is equal to changing three or
four certificates in proof scheme: one for a change in
one of the object’s pivot, and three or two for change in
vertical order of objects.

We will now show that no more changes is needed.
Assume that in a small interval before and after the hor-
izontal event, no other pivot events would occur. From
lemma 1, we know that there would be no change in the
above objects. What about the below objects? We can
see that for a change in the pivot of an object, there
must be an occlusion between the objects and its previ-
ous pivot, and this means that three objects must lie on
the same line, i.e. we need a pivot event (see Figure 8).
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Figure 8: Only upon occurring a pivot event the struc-
ture of other objects will change.

Theorem 3 FEach of the events in the kinetic polar di-
agram of a set of points takes O(logn) time to process
and causes O(1) changes in the proof scheme.

Proof: For horizontal events, we need to update at
most three certificates, we just need to find these cer-
tificates in the proof scheme and replace them with the
new ones, which takes O(logn) time. We also need to
update one pivot certificate with the same cost. The
same holds for pivot events, which we need to find and
update O(1) pivot certificates. O

Theorem 4 The initial event list can be built in
O(nlogn) time, using a suitable event queue.

Proof: As there are O(n) certificates in our proof
scheme, and for each moving object. we can find the
first certificate that it will violate by a simple O(logn)
search. The proof is straightforward. O

3 Other Geometric Objects

Grima et al. proposed the polar diagram of geometric
objects as a new plane partition with similar character-
istics to the polar diagram of points [4]. In this section
we extend our kinetic model to include these types of
objects as well.

3.1 Line Segments and Polygonal Objects

3.1.1 Polar Diagram of Line Segments and Polygons

The two-step algorithm for calculating the polar dia-
gram of a set of line segments and polygons described
in [4] is not suitable for our purpose and we modify it
so that it can be used in constructing the KDS of polar
diagram.

In our proposed modification, the final set of polar
edges is calculated at the same time as the incremental
method is processed. In each step, we decide whether
or not the edges, horizontal or oblique, will be added.

Every polar edge associated with the polar diagram of
a set of line segments or polygons, is contained into the
polar diagram of the set of points made up of their line
segments or polygon vertices [4]. As the incremental

method is processed, for each point of this set, we have
the following rules:
For horizontal polar edges, we can say:

1. If there is any obstacle to the right of an endpoint,
the horizontal polar edge will be added.

2. If we decided to add a horizontal edge according to
the previous rule, and it reaches any obstacle, its
left portion will be discarded.

For oblique polar edges, the oblique edge is added if
none of the following rules applies:

3. If there is any obstacle to the right of an endpoint.

4. If the oblique edge lies to the left of the belonging
line segment or inside the polygon.

5. If the pivot of the endpoint is the other endpoint
of the same line segment.

Figure 9 shows an example of applying this algorithm
(with discarded edges as dotted lines) in the polar dia-
gram of a set of line segments.

Figure 9: Discarded edges in a polar diagram of line
segments.

3.1.2 KDS of the Polar Diagram of Line Segments
and Polygons

As stated in Section 3.1.1, the given algorithm for cal-
culating the polar diagram of a set of line segments or
polygons, is based on the incremental process of finding
the polar diagram of a set of points; the only difference
is in applying the specified rules to decide about the
appearance of each polar edge in the polar diagram at
each step. Therefore, the events which degenerate the
certificates of this kinetic configuration is a subset of
the events of the KDS of a set of points. The following
theorem shows that the events of the line segments and
polygons case are exactly the same as the events of the
point objects.

Theorem 5 The events of the kinetic polar diagram of
a set of line segments and polygons are exactly the same
as those of the set of points made up of line segment
endpoints or polygon vertices.
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Proof: As discussed before, according to the proposed
algorithm for finding the polar diagram of a set of line
segments or polygons, the events of this case include the
events of point objects case. We only need to prove that
according to specified rules of the proposed algorithm,
the decision on the appearance of polar edges could only
change at the events for the set of related points:

1. If an oblique polar edge is discarded because of an
obstacle to its right, the only way that this position
changes and the obstacle leaves its right (which,
then we must draw the oblique edge) is in a hori-
zontal event. For example in Figure 9 the segment
ab must move in such a way that b passes segment
cd and then we must draw b’s oblique edge. During
this movement a horizontal event will occur when
b passes d and this situation can be handled with
horizontal event.

2. If an oblique edge is discarded because of lying to
the left of belonging line segment or inside the poly-
gon, the only movement that can change this situ-
ation, as an event is the movement of the bottom
endpoint of the segment and swapping its location
with the upper one. During this movement a hori-
zontal occurs.

3. If an oblique edge is discarded because one of its
endpoint is pivot of its other endpoint, the only way
that this situation can change is the movement of
the segment in such a way that the two endpoints
of the segment lies in a same horizontal level, which
is a horizontal event.

4. If a horizontal line is partially added because of
reaching an obstacle, the motion that can change
this situation and causes an event is the movement
of the endpoint to pass the obstacle, which is a
horizontal event.

5. If a horizontal line is added because of an obstacle
to its right, when the obstacle moves and clear the
right of the point a horizontal event will occur one
of the endpoints of the obstacle passes the point.

This completes the proof. O

3.2 Circular Objects

For circular objects, we use a similar approach to that
of previous section about the line segments. For our
proof scheme, we maintain a sorted list of all 2n north
and south poles. It can be done by 2n — 1 certificates.
Also, for each oblique polar edge, we add a certificate,
denoting its main object and its pivot. As there may be
up to 3(n+1)—6 such edges [4], we may have up to 3n—3
such certificates. Like the point objects case, we have
two kinds of events upon moving of objects: horizontal

o O
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Figure 10: As three objects sg, s; and so form a tri-
tangent, a pivot event will occur.

o
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Figure 11: A pivot event.
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events and pivot events. As we will see, while handling
these events, there might be one other type of change
in polar structure which we are not interested in, i.e. as
we used a lazy structure for our proof scheme, we do
not consider this type of change. This is when a polar
edge is occluded by another object in its way.

Pivot event:

These events are essentially the same as those for
point objects. As we can see in Figures 10 and 11, when
three objects become tri-tangent, there is a potential
pivot event: when one of them is pivot of another one,
we have a pivot event. In these events, the object that
has its pivot in trio will change its pivot and we need
to replace the corresponding certificate in proof scheme
with a another one.

Horizontal event:

o

Figure 12: A horizontal event. A polar edge from a
South pole will appear.

As there are 2n poles for n circular objects, the pro-
cessing of horizontal events are a little different from
those of point objects. Figures 12 and 13 shows the
cases where two different pole types lay on a same hor-
izontal level. As we can see, in the case of Figure 12, a
new polar edge from a South pole appears, and in case
of Figure 13, a previous present polar becomes occluded.
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Figure 13: A horizontal event. A polar edge will be
occluded.

As we said before, we take non of these changes in po-
lar structure in our proof scheme, and we only need to
update certificates corresponding to the vertical order
of poles.

Another type of horizontal event occurs when two
pole of the same kind (north or south) lie on a horizon-
tal line (Figures 14 and 15). Apart from appearing or
occluding of polar edges, there might be another change
in the polar structure. In these cases, an oblique edge
can appear (Figure 14) or disappear (Figure 15). So
we need to add or remove the corresponding certificates
indicating the oblique polar edge.

0@y ©Oo

Figure 14: A horizontal event. A polar edge from a
South pole and an oblique edge will appear.
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Figure 15: A horizontal event. A polar edge will no be
occluded anymore.

From above discussions we can deduce the following
proposition.

Proposition 6 FEach of the events in kinetic polar di-
agram of a set of circles takes O(logn) time to process
and it has O(1) changes in the proof scheme.

4 KDS Evaluation

In this section we evaluate our kinetic model according
to the criteria of a good KDS. Similar to other algo-
rithms, a good KDS should take small space, small ini-
tialization cost, and efficient update time. In KDS, an
update may happen in two cases. One is when a certifi-
cate fails and an event happens. The other is when the
motion of an object changes. In the first case, we need
to update the certificate set, and in the second case we

must recompute the failure times for all the certificates
that involve that object. These requirements induce the
following quality measurements for KDSs [2].
Compactness: the size of the proof.
Responsiveness: the time to process an event.
Locality: the number of certificates that a single ob-
ject involves in.

Another crucial efficiency factor of a KDS is the num-
ber of events processed. This factor determines the
number of times we need to stop and check our proof
and structure. This factor is expressed by efficiency:
Efficiency: the number of events processed.

Now, we consider each of the above criteria in our
kinetic model.

Compactness. The structure clearly takes linear
space. As we stated in Section 2.1, for a set of n point
objects, the proof scheme consists of n — 1 certificates
for sorted vertical order of objects and n certificates for
maintaining the pivots of each object, so in total, our
proof scheme have 2n — 1 certificates.

Responsiveness. It is O(logn) for processing an
event as there are O(1) certificates need to reschedule.
Each reschedule takes O(logn) time.

Locality.  Each object is involved in at most three
certificates.
Efficiency. All events are exterior—the ordering

changes once a horizontal event happens, or the pivot
of an object changes once a pivot event happens. The
number of events is bounded by O(n?) as any two points
can exchange their ordering only constant number of
times for constant degree algebraic motions, and any
point is a potential candidate for being the pivot of an-
other point.

5 Conclusion and Future Work

In this paper we studied the concept of polar diagram,
which is a new locus approach for problems processing
angles, and KDS, which is a structure that maintains
certain attributes of a set of continuously moving ob-
jects in the scene. We used KDS to model the behav-
ior of a polar diagram when our scene is dynamic, i.e.
we maintain the polar diagram of a set of continuously
moving objects. We showed that our proposed structure
meets the main criteria of a good KDS.

Following our defined model for kinetic polar dia-
gram, we can use it in direct applications of polar dia-
gram to maintain the computed attributes. For exam-
ple, we can use kinetic polar diagram for maintaining
the convex hull of a set of moving objects with low cost.
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